Zum Hauptinhalt springen

· 11 Minuten Lesezeit
Als PDF herunterladen
Die Philosophen der älteren Stoa hatten eine Aussagenlogik, die der heutigen klassischen Aussagenlogik recht ähnlich ist (einführend: Strobach 2019, 44-49). Sie orientierten sich beim Argumentieren an dieser Logik, was zu Argumenten von großer Klarheit führte. Von einem der frühesten Stoiker, Chrysipp (ca. 280 – ca. 208 v. Chr.), ist ein bemerkenswertes Argument für eine Konklusion überliefert, welche die Stoiker selbst als These vertraten: Manche Tiere (außer dem Menschen) sind zu logischem Denken in der Lage. Das Argument ist bis zum heutigen Tag systematisch bedeutend, indem es zum Nachdenken über die Frage anregt, ob, und falls ja, wie Tiere denken können (Perler/Wild 2005).

Bibliographische Angaben

Das Argument des Chrysipp über den logisch schließenden Hund findet sich als Fragment 36E in Long/Sedley (1987) sowie in Hülser (1987). Es ist überliefert beim antiken Skeptiker Sextus Empiricus (Grundriß der pyrrhonischen Skepsis, I 69). Hier verwendete Übersetzung: Malte Hossenfelder. Auslassungen und Ergänzungen in eckigen Klammern: Niko Strobach. Auf eine Wiedergabe des griechischen Originals wird verzichtet.

Textstelle

Die Stelle lautet:

Nach Chrysipp [...] hat der Hund sogar an der vielgepriesenen Dialektik teil. Jedenfalls behauptet Chrysipp, der Hund wende das fünfte mehrgliedrige unbewiesene Argument an, wenn er an einen Dreiweg kommt und nach dem Spüren auf den zwei Wegen, die das Wild nicht entlang gelaufen sei, sofort den dritten entlang stürme, ohne hier überhaupt gespürt zu haben. Er schließe nämlich [...] dem Sinne nach (dynámei) folgendermaßen: „Das Wild ist entweder hier oder hier oder hier entlang gelaufen. Weder aber hier noch hier. Also hier.“

Das griechische Äquivalent zu „Hund“ („kyôn“) findet sich zwar nicht an der Textstelle selbst, kann aber sicher ergänzt werden, da ihr Kontext eine Passage über die Fähigkeiten von Hunden ist.

Argumentrekonstruktion

Das Argument hat die Struktur eines doppelten modus ponens. Der modus ponens ist eine Schlussform, welche die Stoiker akzeptierten: Wenn p, dann q; nun aber p; also q.

  • P1: Wenn es einen Hund gibt, der einen disjunktiven modus tollens mit drei Fällen anwendet, dann gibt es wenigstens einen Hund, der zu logischem Denken in der Lage ist (er „nimmt an der vielgepriesenen Dialektik teil“).
  • P2: Wenn es einen (Jagd-) Hund gibt, der an einer dreifachen Weggabelung, nachdem er in zwei Wege geschnüffelt hat, die das verfolgte Tier nicht genommen hat, ohne weiteres Schnüffeln in den dritten Weg läuft, dann gibt es einen Hund, der den disjunktiven modus tollens mit drei Fällen (Entweder p oder q oder r; nun aber weder p noch q; also r) anwendet.
  • P3: Es gibt einen Hund, der an einer dreifachen Weggabelung, nachdem er in zwei Wege geschnüffelt hat, die das verfolgte Tier nicht genommen hat, ohne weiteres Schnüffeln in den dritten Weg läuft.
  • Z1: Es gibt einen Hund, der einen disjunktiven modus tollens mit drei Fällen anwendet. (aus P2 und P3 mit modus ponens)
  • K: Es gibt es ist wenigstens einen Hund, der zu logischem Denken in der Lage ist. (aus P1 und Z1 mit modus ponens)

Kommentar

Die Rekonstruktion bedient sich einer aussagenlogischen Schlussformel, die die Stoiker akzeptierten und die auch in der klassischen Aussagenlogik gilt. Die Rekonstruktion ist deduktiv gültig. Ist sie auch stichhaltig? Dafür müssten alle Prämissen wahr sein. Chrysipp hat sie offenbar für wahr gehalten. Aber sind sie das? Es ist sinnvoll, die Prämissen in umgekehrter Reihenfolge zu betrachten.

P3 ist eine empirische Prämisse. Um ihre Wahrheit zu etablieren, muss man einen Hund finden, der das in P3 beschriebene Verhalten auch wirklich an den Tag legt. Dabei muss man Beobachtungsfehler sorgfältig vermeiden. Sieht man (am besten, wenn man die Aufnahme eines Experiments in Zeitlupe ansieht) genau, dass der Hund in die ersten beiden Wege schnüffelt? Dass er in den dritten nicht hineinschnüffelt? Man muss sich davor hüten, P3 einfach zu glauben, weil man das Vorurteil hat, dass Hunde viel können. Chrysipp formuliert P3 vorbildlich: Es ergibt sich aus seiner Beschreibung genau, wie ein Experiment zum Test von P3 aussehen würde. Die Antwort auf die Frage, ob P3 wahr ist, lautet also: Schauen wir!

Übrigens mag man sich fragen, ob die oben vorgenommene Rekonstruktion angemessen ist, wenn die Wahrheit von P3 nur das beschriebene Verhalten eines einzigen Hundes verlangt. Soll für das, was Chrysipp behauptet, bereits ausreichen, dass ein Hund das beschriebene Verhalten einmalig zeigt, oder soll wenigstens ein Hund dies üblicherweise tun? Will Chrysipp nicht etwas über arttypisches Verhalten von Hunden sagen? Dann sollte man das Experiment wohl mit vielen Hunden machen. Man mag deshalb eine formal ganz parallele Rekonstruktion erwägen, in der das Gegenstück zu P3 lautet:

  • P3P3': Hunde, die an einer dreifachen Weggabelung, nachdem sie in zwei Wege geschnüffelt haben, die ein verfolgtes Tier nicht genommen hat, laufen (art-)typischerweise ohne weiteres Schnüffeln in den dritten Weg.

Freilich müsste man dann sehr genau sagen, unter welchen Bedingungen man die Wahrheit von P3P3' für empirisch nachgewiesen oder aber widerlegt hält. (Wie viele Hunde testet man? Wie viele Ausreißer sind für arttypisches Verhalten erlaubt?)

P2 scheint ein klarer Fall zu sein. Aber auch hier ist größte methodische und begriffliche Vorsicht angebracht. Angenommen, P3 ist wahr. Können wir dem beobachteten Verhalten wirklich ohne weiteres entnehmen, dass der Hund den disjunktiven modus tollens mit drei Fällen angewendet hat? Ist das vielleicht nur eine Hypothese von uns, die sein Verhalten gut erklärt? Wieviel, und was, muss dem Hund durch den Kopf gehen, damit wir von „anwenden“ sprechen? Was haben wir damit gemeint? Es gibt einen Hinweis im Originaltext darauf, dass Chrysipp dieses Problem gesehen hat. Er schreibt vorsichtig, der Hund schließe dynámei wie beschrieben. Das Wort „dynámei“ ist an dieser Stelle schwer zu übersetzten. Hossenfelder übersetzt „dem Sinne nach“. Bury übersetzt „implicitly“. Die Antwort auf die Frage, ob P2 wahr ist, lautet also: Das hängt von einer guten Theorie über Hunde ab.

P1 scheint über jeden Zweifel erhaben. Doch auch hier kann man einen Moment zögern. Damit wir dem Hund die Fähigkeit zu logischem Denken attestieren, sollte der disjunktive modus tollens mit drei Fällen lieber kein Fehlschluss sein. Fähigkeit zum logischen Denken ist ein normatives Konzept. Der Hund soll es richtig machen. P1 ist nur dann wahr, wenn der disjunktive modus tollens mit drei Fällen ein gültiger Schluss ist. Die Stoiker haben den disjunktiven modus tollens mit n Fällen (n \geq 2) für so offensichtlich gültig gehalten, dass sie ihm den Status eines Axioms gegeben haben, das man nicht weiter begründet. Das ist mit „fünftes mehrgliedriges unbewiesenes Argument“ gemeint (sozusagen: „Axiom No. 5“). Aber hatten sie damit Recht? Das ist ein echtes Problem, selbst wenn man heutige nichtklassische Logiken ausklammert – was hiermit geschehen sei. Es fragt sich: Lässt sich ein disjunktiver modus tollens mit n Fällen immer in einen gültigen Schluss der klassischen Aussagenlogik übersetzen? Diese Frage wird im zweiten Teil des Abschnitts „Formale Detailanalyse“ diskutiert (er erfordert starke Nerven und kann übergangen werden). Die Antwort wird „ja“ lauten. Das etabliert die Wahrheit von P1 unter Voraussetzung der klassischen Aussagenlogik. Aber die Übersetzung wird schwieriger sein, als man zunächst meint.

Formale Detailanalyse

Das Hauptargument lässt sich leicht mit Mitteln der klassischen Aussagenlogik als deduktiv gültiges Argument formalisieren:

Abkürzungsverzeichnis

  • p: Es gibt einen Hund, der an einer dreifachen Weggabelung, nachdem er in zwei Wege geschnüffelt hat, die das verfolgte Tier nicht genommen hat, ohne weiteres Schnüffeln in den dritten Weg läuft.
  • q: Es gibt einen Hund, der einen disjunktiven modus tollens mit drei Fällen anwendet.
  • r: Es gibt es ist einen Hund, der zu logischem Denken in der Lage ist.

Argument

1q \to rPrämisseP1
2p \to qPrämisseP2
3pPrämisseP3
4q2,3 modus ponensZ1
5r1,4 modus ponensK

Bei der Diskussion der Wahrheit von P1 hat sich die folgende Frage ergeben: Lässt sich ein disjunktiver modus tollens mit n Fällen (n \geq 2) immer in einen gültigen Schluss mit Formeln der klassischen Aussagenlogik übersetzen? Um die Frage zu beantworten, muss man zunächst scharfstellen, was der disjunktive modus tollens mit n Fällen (n \geq 2) genau ist. Er besteht aus einer disjunktiven Prämisse mit n Fällen und n – 1 weiteren Prämissen, in denen alle Fälle aus der disjunktiven Prämisse bis auf einen ausgeschlossen werden, der die Konklusion ist. Was sind die Wahrheitsbedingungen einer disjunktiven Prämisse in der Logik der Stoiker? Darüber gibt uns das folgende Fragment zur stoischen Logik Auskunft (Long/Sedley (1987), 35E):

[Für das, was wir auf Latein] disiunctum nennen [...gilt:] Von all den [Sätzen], die getrennt werden, muss genau einer wahr sein, die übrigen falsch.“

Die Junktoren der klassischen Aussagenlogik sind, abgesehen vom einstelligen Negator, zweistellige Junktoren. Man wird daher zunächst nach einer Übersetzung für den Spezialfall des disjunktiven modus tollens mit zwei Fällen suchen. Hier gibt es zwei Kandidatinnen. In einem Fall wird das Zeichen \lor verwendet, das als Zeichen für eine inklusive „Oder“-Verbindung eingeführt ist, im anderen Fall das Zeichen \mathrel{\nabla}, das als Zeichen für eine exklusive „Oder“-Verbindung stehen soll. Das metasprachliche Zeichen \models drückt aus, dass, was rechts davon steht, aus dem folgt, was links davon steht. Die Kandidatinnen für eine Übersetzung sind:

(1) pq,¬pqp \lor q, \neg p \models q
(2) pq,¬pqp \mathrel{\nabla} q, \neg p \models q

(1) und (2) sind zwar beides gültige Schlüsse der klassischen Aussagenlogik. Man kann das mit einem üblichen Verfahren, zum Beispiel der Tableau-Methode, leicht zeigen. Aber sind beide gleich gute Übersetzungen des disjunktiven modus tollens mit zwei Fällen? Nein, (2) ist besser. Denn die Wahrheitsbedingungen von pq\text{„} p \lor q \text{“} in (1) stimmen nicht mit denen der stoischen disjunktiven Prämisse mit zwei Fällen überein. pq\text{„} p \lor q \text{“} wird auch dann wahr, wenn „p“ und „q“ beide wahr sind. Die von pq\text{„} p \mathrel{\nabla} q \text{“} tun dies. Nachdem das geklärt ist, meint man leicht, eine angemessene Übersetzung des disjunktiven modus tollens mit drei Fällen zu haben, der sich auf n Fälle verallgemeinern lässt:

(3) (pq)r,¬p,¬qr(p \mathrel{\nabla} q) \mathrel{\nabla} r, \neg p, \neg q \models r

Das ist zwar wiederum ein gültiger Schluss der klassischen Aussagenlogik (wie sich wieder mit einem üblichen Verfahren leicht zeigen lässt – dasselbe gilt für \text{„}\nabla\text{“} statt \text{„} \mathord{\lor} \text{“} und auch, wenn man anders klammert). Aber überraschenderweise hat (3) als Übersetzung des disjunktiven modus tollens mit drei Fällen dasselbe Problem wie (1): Wenn „p“, „q“ und „r“ alle wahr sind, ist (pq)r\text{„} (p \mathrel{\nabla} q) \mathrel{\nabla}r \text{“} wahr – was nicht zur stoischen Semantik für disjunktive Prämissen passt. Mit zweimal \text{„}\mathord{\lor}\text{“} hat man das Problem erst recht. Was mit der disjunktiven Prämisse mit drei Fällen ausgedrückt werden soll, ist komplizierter. Der Hund jagt ein Kaninchen, nicht ein Photon. Ein Kaninchen nimmt nur einen Weg auf einmal. Die Disjunkte der stoischen disjunktiven Prämisse entsprechen diesem Stück Weltwissen:

  • „eines wahr, die übrigen falsch“.
  • p¬q¬r¬pq¬r¬p¬qrp \land \neg q \land \neg r\hspace{10mm}\neg p \land q \land \neg r\hspace{10mm}\neg p \land \neg q \land r

Womit sollte man die Disjunkte verbinden? In Frage kommen \mathrel{\nabla} und \lor:

(4) ((p¬q¬r)(¬pq¬r))(¬p¬qr)((p \land \neg q \land \neg r) \mathrel{\nabla} (\neg p \land q \land \neg r)) \mathrel{\nabla} (\neg p \land \neg q \land r)
(5) ((p¬q¬r)(¬pq¬r))(¬p¬qr)((p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r)) \lor (\neg p \land \neg q \land r)

Beide Varianten sind als Übersetzungen der disjunktiven Prämisse mit drei Fällen gleich gut: Sie werden genau in den drei Fällen wahr, die man auszeichnen möchte: nur p, nur q, nur r. Und die Schlüsse? Auch hier ist beides gültig (um sich zu überzeugen, sind sogar Wahrheitswerttabellen mal nützlich):

(6) ((p¬q¬r)(¬pq¬r))(¬p¬qr),¬p,¬qr((p \land \neg q \land \neg r) \mathrel{\nabla} (\neg p \land q \land \neg r)) \mathrel{\nabla} (\neg p \land \neg q \land r), \neg p, \neg q \models r
(7) ((p¬q¬r)(¬pq¬r))(¬p¬qr),¬p,¬qr((p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r)) \lor (\neg p \land \neg q \land r), \neg p, \neg q \models r

Mit nur zwei Fällen stimmt’s auch. Und mit n Fällen. Es bietet sich daher an, eine n-stellige stoische Disjunktion mit der folgenden Regel für eine abkürzende Notation zu simulieren:

(Def. n)nα1αn\mathrel{\nabla}^n) \ulcorner\mathrel{\nabla}^n \alpha_1 \ldots \alpha_n\urcorner kürzt ab:
(α1¬α2¬αn)(¬α1¬αn1αn)\ulcorner (\alpha_1\land \neg\alpha_2 \land \ldots \land \neg\alpha_n) \lor \ldots \lor (\neg\alpha_1 \land \ldots \neg\alpha_{n-1} \land \alpha_n)\urcorner

Nun lässt sich als gültiges Schlussschema der klassischen Aussagenlogik festhalten:

(8) nα1αn,¬α1,,¬αn1αn\mathrel{\nabla}^n \alpha_1 \ldots \alpha_n, \neg\alpha_1, \ldots, \neg\alpha_{n-1} \models\alpha_n

Ein Spezialfall dieses Schemas ist:

(9) 3pqr,¬p,¬qr\mathrel{\nabla}^3 p q r, \neg p, \neg q \models r

Das rechtfertigt den stoischen disjunktiven modus tollens mit drei Fällen vom Standpunkt der klassischen Aussagenlogik und bietet eine gute Motivation für die Wahrheit von P1. Für den Fall, dass P2 und P3 wahr sind, kann man festhalten: Ganz schön schlau, der Hund.

Literaturangaben

  • Karlheinz Hülser (1987): Die Fragmente zur Dialektik der Stoiker. 4 Bde. Stuttgart-Bad Cannstadt 1987 f.
  • Anthony A. Long/David N. Sedley (1987): The Hellenistic Philosophers. Cambridge: Cambridge University Press.
  • Sextus Empiricus (1968): Grundriß der pyrrhonischen Skepsis. Eingeleitet und übersetzt von Malte Hossenfelder. Frankfurt/M.: Suhrkamp.
  • Sextus Empiricus (1933): Outlines of Pyrrhonism. Übersetzt von R.G. Bury. Cambridge/MA: Harvard University Press.
  • Niko Strobach (2019), Einführung in die Logik. WBG: Darmstadt.

· 5 Minuten Lesezeit
Als PDF herunterladen
Weil der australische Philosoph Frank Jackson der Hauptfigur einer kleinen Geschichte den Allerweltsnamen „Mary“ gegeben hat, ist das Argument, das diese Geschichte illustrieren soll, als Mary-Argument (oder, kürzer, Mary) bekannt. Es ist eines der berühmtesten Argumente in der Philosophie des Geistes (philosophy of mind) geworden, obwohl Jackson es selbst später skeptisch gesehen hat. Es ist ein Argument gegen eine Position, die den Namen „Physikalismus“ („physicalism“) trägt. Aus dem Argument geht nebenbei recht gut verständlich hervor, worin diese Position besteht.

Bibliographische Angaben

Frank Jackson, Journal of Philosophy, 83/5 (1986), 291-295 [PhilPapers] [DOI]

Textstelle

Jacksons Argument lautet:

„Mary is confined to a black-and-white room, is educated through black-and-white books and through lectures relayed on black-and-white television. In this way she learns everything there is to know about the physical nature of the world. She knows all the physical facts about us and our environment, in a wider sense of “physical” which includes everything in completed physics, chemistry and neurophysiology [...]. If physicalism is true, she knows all there is to know. […] It seems, however, that Mary does not know all there is to know. For when she is let out of the black-and-white room or given a color television, she will learn what it is like to see something red, say. This is rightly described as learning – she will not say ‘ho, hum.’ Hence, physicalism is false.”

Argumentrekonstruktion

Es scheint auf den ersten Blick so, dass das Mary-Argument ein ganz einfach gebautes Argument ist, nämlich ein so genannter modus tollens, kurz m.t.: Wenn p, dann q; nun aber nicht q; also nicht p.

Rekonstruktionsversuch

Prämisse 1: Wenn der Physikalismus wahr ist, weiß Mary alles, was es zu wissen gibt.
Prämisse 2: Mary weiß nicht alles, was es zu wissen gibt.
Konklusion: Der Physikalismus ist nicht wahr. (modus tollens aus P1, P2)

Der modus tollens wird für gewöhnlich als gültig anerkannt und ist auch ein gültiger Schluss der klassischen Aussagenlogik. Dieser erste Rekonstruktionsversuch fängt zwar schon wichtige Elemente des Textes ein. Aber er berücksichtigt einen Punkt nicht, der doch zum Kern des Arguments gehört: das Lernen. Es ist daher besser, eine etwas kompliziertere Rekonstruktion vorzunehmen, in der dieser Punkt berücksichtigt ist. In ihr ist der modus tollens kombiniert mit einem so genannten modus ponens, kurz m.p.: Wenn p, dann q; nun aber p; also q.

Rekonstruktion

Prämisse 1: Wenn der Physikalismus wahr ist, weiß Mary alles, was es zu wissen gibt.
Prämisse 2a: Wenn Mary etwas lernt, dann weiß Mary nicht alles, was es zu wissen gibt.
Prämisse 3: Mary lernt etwas.
Zwischenkonklusion Z: Mary weiß nicht alles, was es zu wissen gibt. (m.p. aus P2a, P3)
Konklusion: Der Physikalismus ist nicht wahr. (m.t. aus P1, Z)

Der modus ponens wird gewöhnlich ebenfalls als gültig anerkannt und ist auch ein gültiger Schluss der klassischen Aussagenlogik.

Kommentar

An der deduktiven Gültigkeit besteht kein Zweifel. Die Frage ist, ob das Argument auch stichhaltig ist. Das ist so, falls es nicht nur deduktiv gültig ist, sondern auch seine Prämissen wahr sind.

Um sich fragen zu können, ob die Prämissen wahr sind, muss man sie zunächst inhaltlich verstehen. Dafür muss man ungefähr wissen, was das Wort „Physikalismus“ bedeutet. Man kann das indirekt den ersten Sätzen des zitierten Textes entnehmen: Physikalismus ist die These, dass alles physikalisch ist. Etwas genauer gesagt: Physikalismus ist die These, dass alle Tatsachen (Fakten) physikalische Tatsachen sind. Daraus folgt: Wenn der Physikalismus wahr ist, dann kennt jemand, der alle physikalischen Tatsachen kennt, überhaupt alle Tatsachen. Zurzeit sind längst nicht alle physikalischen Tatsachen bekannt. Das berücksichtigt Jackson, indem er die physikalischen Tatsachen in einem weiten Sinn charakterisiert: als diejenigen Tatsachen, die eine dereinst vollendete Naturwissenschaft, die Physik, Chemie und Neurowissenschaft vereinigt, erkannt haben wird.

Da das Argument gültig ist, muss ein Verteidiger des Physikalismus, der seine Stichhaltigkeit bestreitet, wenigstens eine der Prämissen bestreiten. Hier gibt es verschiedene Möglichkeiten.

Zweifel an der Stichhaltigkeit 1: P2a zugeben und P3 bestreiten: Ja, wenn Mary etwas (Neues) lernen würde, dann wäre der Physikalismus falsch. Aber Mary lernt gar nichts Neues. Lernen kann man nämlich nur etwas, was es zu wissen gibt, und sie weiß schon alles. Sie gewinnt bloß neue (vielleicht überwältigende) Eindrücke.

Variante, die ebenfalls P3 bestreitet: Mary lernt nichts Neues. Sie weiß sogar schon, wie rote und gelbe Dinge aussehen. Wir können uns nicht vorstellen, wie es ist, alles zu wissen. Diese Variante illustriert Daniel Dennett mit einer Fortsetzung der Geschichte: Man zeigt Mary als erstes eine blaue angemalte Banane und sie reagiert (sinngemäß) mit „Für wie dumm haltet ihr mich eigentlich?” (Dennett 1991, 399).

Zweifel an der Stichhaltigkeit 2: P3 zugeben und P2a bestreiten. Mary lernt zwar etwas Neues, nämlich: wie es sich anfühlt, rot zu sehen. Aber der Physikalismus ist trotzdem nicht falsch. Denn Mary lernt nichts, was im hier einschlägigen Sinne des Wortes „Wissen“ Wissen ist. Das bezieht sich auf Tatsachen, und Mary hat schon komplettes Tatsachenwissen. Rot-Eindrücke (oder wie es ist, sie zu haben) sind keine Tatsachen.

Formale Detailanalyse

Das Argument lässt sich wie folgt als gültiger Schluss der klassischen Aussagenlogik formalisieren:

Abkürzungsverzeichnis

p:p: Der Physikalismus ist wahr.
q:q: Mary weiß alles, was es zu wissen gibt.
r:r: Mary lernt etwas.

Rekonstruktion

1pqp \to qPrämisseP1
2r¬qr \to \neg qPrämisseP2a
3rrPrämisseP3
4¬q\neg q2,3 modus ponens
5¬p\neg p1,4 modus ponens

Literaturangaben

  • Daniel Dennett (1991): Consciousness Explained, Boston: Little, Brown, & Co.
  • Peter J. Ludlow, Yujin Nagasawa und Daniel Stoljar (Hrsg.) (2004): There’s something about Mary: essays on phenomenal consciousness and Frank Jackson’s knowledge argument, MIT Press, Cambridge (Massachusetts).

· 7 Minuten Lesezeit
Als PDF herunterladen
Dieses Fragment aus dem Nachlass Friedrich Nietzsches behandelt die Frage nach dem Status des Satzes vom Widerspruch im Besonderen und der Logik im Allgemeinen. Er argumentiert für die Auffassung, dass die Logik keine deskritive, sondern eine normative Rolle spielt.

Bibliographische Angaben

Das nachgelassene Fragment stammt aus dem Jahr 1887 und findet sich in Band 12 der Kritischen Studienausgabe: N 1887, 9[97], KSA 12, S. 389.

Textstelle

Wenn, nach Aristoteles der Satz vom Widerspruch der gewisseste aller Grundsätze ist, wenn er der letzte und unterste ist, auf den alle Beweisführung[en] zurückgehn, wenn in ihm das Princip aller anderen Axiome liegt: um so strenger sollte man erwägen, was er im Grunde schon an Behauptungen voraussetzt. Entweder wird mit ihm etwas in Betreff des Wirklichen, Seienden behauptet, wie als ob er dasselbe anderswoher bereits kennte: nämlich daß ihm nicht entgegengesetzte Prädikate zugesprochen werden können. Oder der Satz will sagen: daß ihm entgegengesetzte Prädikate nicht zugesprochen werden sollen? Dann wäre Logik ein Imperativ, nicht zur Erkenntniß des Wahren, sondern zur Setzung und Zurechtmachung einer Welt, die uns wahr heißen soll. Kurz, die Frage steht offen: sind die logischen Axiome dem Wirklichen adäquat, oder sind sie Maaßstäbe und Mittel, um Wirkliches den Begriff „Wirklichkeit“ für uns erst zu schaffen?… Um das Erste bejahen zu können, müßte man aber, wie gesagt, das Seiende bereits kennen; was schlechterdings nicht der Fall ist. Der Satz enthält also kein Kriterium der Wahrheit, sondern einen Imperativ über das, was als wahr gelten soll.

(Friedrich Nietzsche, N 1887, 9[97], KSA 12, S. 389, Hervorhebungen im Original.)

Argumentrekonstruktion

Nietzsches Argument lässt sich als ein Schluss von drei Prämissen auf die zu begründende Konklusion rekonstruieren. Einige alternative und abgewandelte Rekonstruktionsmöglichkeiten werden im Kommentar diskutiert.

  1. Entweder der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden können, oder der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden sollen.
  2. Wenn der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden können, dann kennen wir das Seiende bereits unabhängig vom Satz vom Widerspruch.
  3. Es ist nicht der Fall, dass wir das Seiende bereits unabhängig vom Satz vom Widerspruch kennen.

  1. Der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden sollen. (aus 1-3)

Kommentar

Dieses Fragment beginnt mit einer Motivation der Fragestellung: Welchen Status hat der Satz vom Widerspruch im Besonderen und die Logik im Allgemeinen? Auch wenn Nietzsche zunächst nur von ersterem spricht, deutet die spätere Rede von „logischen Axiomen“ klar darauf hin, dass der Satz vom Widerspruch hier pars pro toto für die Logik als Ganze verstanden werden kann. Auch die einleitende Ausführung zur Stellung dieses Axioms in der Philosophie des Aristoteles spricht für diese Deutung.

Danach wird behauptet, dass in der Frage des Gehalts des Satzes vom Widerspruch genau zwei Alternativen bestehen. Diese Aussage findet sich als ersten Prämisse des rekonstruierten Arguments wieder. Die zweite Prämisse benennt eine Konsequenz der ersten Alternative. Und von dierser wird dann durch die Wendung „was schlechterdings nicht der Fall ist“ klar gesagt, dass sie nicht der Fall ist (Prämisse drei). Doch worin genau besteht die hier verneinte Aussage? Sie besagt, dass wir „das Seiende bereits kennen“. Wie lässt sich das jedoch genauer fassen und wie ist das Wörtchen „bereits“ hier zu verstehen?

In der vorgeschlagenen Rekonstruktion ist dieses Problem so gelöst, dass das Seiende logisch unabhängig vom Satz vom Widerspruch bekannt sein müsste, wenn die erste Alternative der Fall wäre. Und da das wiederum „schlechterdings nicht der Fall ist“, vielleicht da wir den Satz vom Widerspruch immer schon voraussetzen, wenn wir über das Seiende nachdenken, kann die erste Alternative per Modus Tollens ausgeschlossen werden. Dementsprechend folgt am Ende die Wahrheit der zweiten Alternative per Ausschlussprinzip. Eine formale Darstellung findet sich weiter unten.

Nicht nur, aber vor allem bei einem solchen, fragmentarischen Text lassen sich auch einige andere und abgewandelte Rekonstruktionen gut begründen.

Erstens wurde hier ausgelassen, dass Nietzsche auch darauf schließt, dass der Satz vom Widerspruch „also kein Kriterium der Wahrheit“ enthält. Vielleicht ist das durch die Falschheit der ersten Alternative begründet, vielleicht aber auch durch die Wahrheit der zweiten Alternative, auf die hier geschlossen wird. In beiden Fällen ließe sich eine passende Subjunktion als weitere Prämisse ergänzen, um auch auf diese Aussage schließen zu können.

Zweitens wurde hier ebenfalls ausgelassen, dass Nietzsche begründet, dass „die Logik ein Imperativ“ ist. Dies lässt sich vermutlich als Formulierungsvariante der zweiten Alternative verstehen, wenn man unterstellt, dass im Text nicht streng zwischen Imperativen und Sollens-Aussagen unterschieden wird. Eine weitere Möglichkeit wäre es, auch hier schlicht eine passende weitere Prämisse zu ergänzen. Zum Beispiel: „Wenn der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden sollen, dann ist die Logik ein Imperativ über das, was uns als wahr gelten soll.“

Drittens schließlich könnte bei dieser Rekonstruktion die zweite Prämisse problematisch erscheinen. Hier wird ein Zusammenhang zwischen einer Aussage über den Gehalt des Satzes vom Widerspruch im „wenn“-Teil und einer Aussage über die Bedingungen unserer Kenntnis des Seienden im „dann“-Teil hergestellt. Aber besteht der Zusammenhang tatsächlich mit der Aussage über den Satz vom Widerspruch und nicht eher mit dem betreffenden Gehalt? Müsste der „wenn“-Teil also nicht entsprechend abgewandelt werden?

An dieser Stelle liegt die Hypothese nahe, dass das Fragment zwar den Gehalt des Satzes vom Widerspruch behandelt, offenbar aber nicht aber an dessen Geltung zweifelt oder diese zumindest nicht thematisiert. Wenn die zweite Prämisse also wie beschrieben abgewandelt wird und dementsprechend auch die erste Prämisse nochmals überarbeitet werden muss, dann ließe sich die dort genannte Alternative wohl am besten als „dann“-Teil einer Subjunktion verstehen, in deren „wenn“-Teil dann die Geltung des Satzes vom Widerspruch als eine Vorbedingung behauptet wird. Diese Vorbedingung erschiene logisch folgerichtig dann ebenfalls in der Konklusion. Diese alternative Rekonstruktionsmöglichkeit sähe insgesamt also so aus:

  1. Wenn der Satz vom Widerspruch wahr ist, dann gilt: entweder es können dem Seienden keine entgegengesetzten Prädikate zugesprochen werden, oder es sollen dem Seienden keine entgegengesetzten Prädikate zugesprochen werden sollen.
  2. Wenn dem Seienden keine entgegengesetzten Prädikate zugesprochen werden können, dann kennen wir das Seiende bereits unabhängig vom Satz vom Widerspruch.
  3. Es ist nicht der Fall, dass wir das Seiende bereits unabhängig vom Satz vom Widerspruch kennen.

  1. Wenn der Satz vom Widerspruch wahr ist, dann sollen dem Seienden keine entgegengesetzten Prädikate zugesprochen werden. (aus 1-3)

Je nach Interpretation ließe sich hier natürlich auch die Prämisse, dass der Satz vom Widerspruch in der Tat wahr ist ergänzen, und am Ende auch darauf schließen, dass dem Seienden in der Tat keine entgegengesetzten Prädikate zugesprochen werden sollen.

Formale Detailanalyse

Der Schluss lässt sich in der ersten Rekonstruktionsform wie folgt formalisieren:

  1. p \lor q
  2. p \rightarrow r
  3. ¬\lnot r

  1. q

Dabei stehen die Buchstaben für die folgenden Aussagen:

  • p: Der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden können.
  • q: Der Satz vom Widerspruch besagt, dass dem Seienden keine entgegengesetzten Prädikate zugesprochen werden sollen.
  • r: Wir kennen das Seiende bereits unabhängig vom Satz vom Widerspruch.

In der zweiten Rekonstruktionsform sieht die Formalisierung so aus:

  1. s \rightarrow (p \lor q)
  2. p \rightarrow r
  3. ¬\lnot r

  1. s \rightarrow q

Um die beiden Rekonstruktionen leichter vergleichbar zu machen, steht hier „r“ für dieselbe Aussage wie oben und „p“ und „q“ für diejenigen Aussagen, die oben in „p“ und „q“ eingebettet waren:

  • s: Der Satz vom Widerspruch ist wahr.
  • p: Dem Seienden können keine entgegengesetzten Prädikate zugesprochen werden.
  • q: Dem Seienden sollen keine entgegengesetzten Prädikate zugesprochen werden.
  • r: Wir kennen das Seiende bereits unabhängig vom Satz vom Widerspruch.

· 3 Minuten Lesezeit
Als PDF herunterladen
Rekonstruiert wird Kants Argument für die These, dass die Welt einen Anfang in der Zeit hat. Zusammen mit Kants Argument für die zugehörige Antithese -- dass die Welt keinen Anfang in der Zeit hat, -- bildet es die erste Antinomie der reinen Vernunft. (Wir ignorieren hier die entsprechenden Behauptungen für die Begrenztheit/Unbegrenztheit des Raumes.)

Bibliographische Angaben

Immanuel Kant, Kritik der reinen Vernunft 1781/1998. Hamburg: Felix Meiner.

Textstelle

Die Welt hat einen Anfang in der Zeit. […] Denn man nehme an, die Welt habe der Zeit nach keinen Anfang: so ist bis zu jedem gegebenen Zeitpunkte eine Ewigkeit abgelaufen und mithin eine unendliche Reihe aufeinander folgender Zustände der Dinge in der Welt verflossen. Nun besteht aber eben darin die Unendlichkeit einer Reihe, daß sie durch sukzessive Synthesis niemals vollendet sein kann. Also ist eine unendliche verflossene Weltreihe unmöglich, mithin ein Anfang der Welt eine nothwendige Bedingung ihres Daseins; welches zuerst zu beweisen war. (A426, B454)

Argumentrekonstruktion

Die Argumentation hat die Form eines Widerspruchbeweises. Aus der Annahme, dass die Welt keinen Anfang in der Zeit habe, wird geschlossen, dass eine unendliche Reihe durch sukzessive Synthesis vollendet wäre, was unmöglich ist. Somit ist die Annahme zu verwerfen.

  1. Die Welt hat keinen Anfang in der Zeit. (Annahme)
  2. Wenn die Welt keinen Anfang in der Zeit hat, dann ist bis zu jedem gegebenen Zeitpunkt eine Ewigkeit abgelaufen.
  3. Wenn bis zu jedem gegebenen Zeitpunkt eine Ewigkeit abgelaufen ist, dann ist eine unendliche Reihe aufeinander folgender Zustände der Dinge in der Welt vollendet.
  4. Wenn eine Reihe von Zuständen unendlich ist, kann sie durch sukzessive Synthesis nicht vollendet werden.
  5. Eine Reihe aufeinander folgender Zustände kann nur durch sukzessive Synthesis vollendet werden. (implizit)

  1. Die Welt hat einen Anfang in der Zeit.

Kommentar

Gemäß einer alternativen Rekonstruktion der obigen Textpassage schließt Kant vorerst auf eine stärkere Konklusion, nämlich die Unmöglichkeit der Annahme, dass die Welt einen Anfang hat, und erst in einem weiteren Schritt aus der Unmöglichkeit der Annahme auf ihre Falschheit. Prämisse 5 ist in der Textstelle nicht explizit. Eine Diskussion des Argumentes müsste insbesondere auf Kants Begriff der „sukzessiven Synthesis“ näher eingehen, um Kants Definition der Unendlichkeit einer Reihe zu erörtern („Nun besteht aber eben darin die Unendlichkeit einer Reihe, daß sie durch sukzessive Synthesis niemals vollendet sein kann.“).

Formale Detailanalyse (optional)

Literaturangaben

· 3 Minuten Lesezeit
Als PDF herunterladen
Rekonstruiert wird Kants Argument dafür, dass die Welt keinen Anfang in der Zeit hat. Zusammen mit Kants Argument dafür, dass die Welt einen Anfang in der Zeit hat, bildet es die erste Antinomie der reinen Vernunft.

Bibliographische Angaben

Immanuel Kant, Kritik der reinen Vernunft 1781/1998. Hamburg: Felix Meiner.

Textstelle

Die Welt hat keinen Anfang […] Denn man setze: sie habe einen Anfang. Da der Anfang ein Dasein ist, wovor eine Zeit vorhergeht, darin das Ding nicht ist, so muß eine Zeit vorhergegangen sein, darin die Welt nicht war, d. i. eine leere Zeit. Nun ist aber in einer leeren Zeit kein Entstehen irgend eines Dinges möglich: weil kein Teil einer solchen Zeit vor einem anderen irgend eine unterscheidende Bedingung des Daseins, vor die des Nichtseins, an sich hat (man mag annehmen, daß sie von sich selbst, oder durch eine andere Ursache entstehe). Also kann zwar in der Welt manche Reihe der Dinge anfangen, die Welt selber aber kann keinen Anfang haben, und ist also in Ansehung der vergangenen Zeit unendlich. (A427/B455)

Argumentrekonstruktion

  1. Die Welt hat einen Anfang in der Zeit. (Annahme)
  2. Wenn die Welt einen Anfang in der Zeit hat, so muss eine Zeit vorhergegangen sein, darin die Welt nicht war.

  1. Es gab eine Zeit, darin die Welt nicht war. (Zwischenkonklusion, aus 1,2)
  2. Kein Teil einer Zeit, darin die Welt nicht war, hat vor einem anderen irgendeine Bedingung des Daseins, die ihn vom Nichtsein unterscheidet.
  3. Wenn kein Teil einer Zeit vor einem anderen irgendeine Bedingung des Daseins hat, die ihn vom Nichtsein unterscheidet, dann ist darin kein entstehen irgendeines Dinges möglich.

  1. In einer Zeit, darin die Welt nicht war, ist kein Entstehen irgendeines Dinges möglich. (Zwischenkonklusion, aus 4,5)
  2. Die Welt ist ein Ding. (implizit)

  1. Das Entstehen der Welt ist unmöglich. (Zwischenkonklusion, implizit, aus 3,6,7)
  2. Etwas, das nicht entstehen kann, hat keinen Anfang in der Zeit. (implizit)

  1. Die Welt hat keinen Anfang in der Zeit. (Aus 8,9)

Kommentar

Formale Detailanalyse (optional)

Literaturangaben

· 3 Minuten Lesezeit
Als PDF herunterladen
Leibniz unterscheidet zwei Arten von Maschinen: (i) Maschinen, die auch aus Teilen zusammengesetzt sind, welche selbst keine Maschinen sind, und (ii) Maschinen, die keine Teile enthalten, die selbst keine Maschine sind. Menschen können nur Maschinen der ersten Art schaffen, Gott auch Maschinen der zweiten Art. Alle Lebewesen sind nach Leibniz Maschinen der zweiten Art, d.h. "natürliche Maschinen."

Bibliographische Angaben

Gottfried Wilhelm Leibniz, Monadologie. 1714/1998. Stuttgart: Reclam.

Textstelle

So ist jeder organische Körper eines Lebewesens eine Art göttliche Maschine oder ein natürlicher Automat, der alle künstlichen Automaten unendliche übertrifft. Denn eine durch die Kunst des Menschen verfertigte Maschine ist nicht in jedem ihrer Teile Maschine. Ein Beispiel: Der Zahn eines Messingrades hat Teile oder Abschnitte, die für uns nichts Künstliches mehr sind und nichts mehr haben, was in Bezug auf den Gebrauch, für den das Rad bestimmt war, auf eine Maschine verweist. Die Maschinen der Natur aber, d.h. die lebenden Körper, sind noch in ihren kleinsten Teilen Maschinen, bis ins Unendliche. Dies macht den Unterschied zwischen der Natur und der Kunst aus, d.h. zwischen der göttlichen Kunst und der unsrigen. (Leibniz, Monadologie, § 64)

Argumentrekonstruktion

  1. Eine vom Menschen gefertigte Maschine ist nicht in jedem ihrer Teile Maschine.
  2. Die lebenden Körper sind noch in ihren kleinsten Teilen Maschinen (bis ins Unendliche).
  3. Alles, was nicht vom Menschen verfertigt ist, ist eine natürliche Maschine. (implizit)

  1. Lebende Körper sind natürliche Maschinen.

Kommentar

Sicherlich bedürfen die Prämissen einer tiefergehenden Analyse und Kritik. Prämisse 2 ist offensichtlich aus heutiger Sicht problematisch. Auch müsste in einer Diskussion des Argumentes z.B., näher bestimmt werden, was ein Ding zu einer Maschine macht.

Formale Detailanalyse (optional)

Der Schluss lässt sich wie folgt formalisieren:

  1. xMx¬Tx\forall x Mx \rightarrow \lnot Tx
  2. xLxTx\forall x Lx \rightarrow Tx
  3. x¬MxNx\forall x \lnot Mx \rightarrow Nx

  1. xLxNx\forall x Lx \rightarrow Nx

Legende:

  • Mx: x ist eine vom Menschen gefertigte Maschine
  • Tx: x ist in jedem ihrer Teile Maschine
  • Lx: x ist ein lebender Körper
  • Nx: x ist eine natürliche Maschine

Literaturangaben

· 3 Minuten Lesezeit
Als PDF herunterladen
Gemäß der "absoluten Konzeption des Raumes", ist der Raum etwas unabhängig Existierendes, eine Substanz, ein "Behälter" der Dinge, welcher von diesen nicht verändert wird. Diese Vorstellung wird gewöhnlich Newton zugeschrieben. Leibniz vertritt hingegen eine "relationale Konzeption des Raumes", in welcher der Raum nicht unabhängig von den Dingen existiert. Wir rekonstruieren ein Argument von Leibniz gegen die absolute Konzeption des Raumes.

Bibliographische Angaben

G.W. Leibniz, 1716, Drittes Schreiben an Clarke, In Schüller, V., Hg. (1991). Der Leibniz-Clarke Briefwechsel. Berlin: Akademie.

Textstelle

Wäre der Raum ein absolutes Seiendes, so könnte sich auch etwas ereignen, wofür es keinen hinreichenden Grund geben kann, was aber meinem Axiom widerspricht. Ich beweise es hier folgendermaßen: Der Raum ist etwas vollkommen Homogenes und wenn sich in dem Raum keine Dinge befinden, so unterscheidet sich ein Raumpunkt von einem anderen Raumpunkt durchaus in nichts. Hieraus folgt nun aber (wobei angenommen wird, daß der Raum außer der gegenseitigen Ordnung der Körper noch irgend etwas an sich ist), daß es keinen Grund geben kann, warum Gott, die gleiche gegenseitige Lage der Körper beibehaltend, die Körper so und nicht anders in den Raum gesetzt hat. Warum ist nicht alles in umgekehrter Weise angeordnet worden, zum Beispiel durch Vertauschen von Ost und West? (Leibniz, Drittes Schreiben an Clarke, Absatz 5)

Argumentrekonstruktion

  1. Wenn der Raum ein absolut Seiendes ist, so gibt es den Raum, ohne dass sich Dinge in ihm befinden.
  2. Wenn es einen Raum gibt, in dem sich keine Dinge befinden, so unterscheidet sich ein Raumpunkt von einem anderen Raumpunkt nicht.
  3. Wenn sich ein Raumpunkt nicht von einem anderen unterscheidet, so gibt es keinen hinreichenden Grund dafür, dass Gott die Körper so und nicht anders in den Raum gesetzt hat (die gleiche gegenseitige Lage der Körper beibehaltend).
  4. Für alles gibt es einen hinreichenden Grund dafür, dass es so und nicht anders ist.
  5. Gott hat die Körper so und nicht anders in den Raum gesetzt.

  1. Der Raum ist kein absolut Seiendes.

Kommentar

Prämisse 4 ist das Prinzip vom hinreichen Grund (in einer möglichen Formulierung), welches Leibniz „als Axiom“ annimmt. Eine Diskussion des Argumentes könnte z.B. dieses Axiom oder Prämisse 5 näher analysieren. Hier stellt sich auch die Frage, ob der Bezug auf Gott für das Argument notwendig ist.

Formale Detailanalyse (optional)

Literaturangaben

Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. London.

· 3 Minuten Lesezeit
Als PDF herunterladen
Anselm v. Canterburys Überlegung aus dem 11. Jh. ist der vielleicht bekannteste Versuch eines Gottesbeweises. In der Literatur finden sich zahlreiche, oft fein ausgearbeitete Rekonstruktions- und Formalisierungsvorschläge. Wir stellen hier lediglich eine grobe Rekonstruktion vor und verweisen den Leser auf weiterführende Literatur.

Bibliographische Angaben

Anselm von Canterbury. Proslogion. Übers. von R. Theis. Stuttgart: Reclam, 2005.

Textstelle

Also sieht auch der Tor als erwiesen an, daß etwas, über das hinaus nichts Größeres gedacht werden kann, zumindest im Verstande ist, weil er das, wenn er es vernimmt, versteht und weil alles, was verstanden wird, im Verstande ist. Und gewiß kann das, über das hinaus Größeres nicht gedacht werden kann, nicht allein im Verstande sein. Denn wenn es auch nur allein im Verstande ist, kann gedacht werden, daß es auch in Wirklichkeit existiert, was größer ist. Wenn also das, über das hinaus Größeres nicht gedacht werden kann, allein im Verstande ist, ist eben das, über das hinaus Größeres nicht gedacht werden kann, eines, über das hinaus Größeres gedacht werden kann. Das aber ist doch unmöglich der Fall. Es existiert also ohne Zweifel etwas, über das hinaus Größeres nicht gedacht werden kann, sowohl im Verstande als auch in Wirklichkeit. (Anselm, Proslogion 2)

Argumentrekonstruktion

  1. Gott ist das, über das hinaus Größeres nicht gedacht werden kann.
  2. Gott existiert im Verstand.
  3. Etwas, das im Verstand und in der Realität existiert, ist größer als etwas, das nur im Verstand existiert.
  4. Wenn Gott nur im Verstand existiert, dann kann etwas gedacht werden, das größer ist als Gott.

  1. Gott existiert in der Realität.

Kommentar

Es gibt zahlreiche alternative und detailliertere Rekonstruktionen von Anselms Gottesbeweis, z.B. in Plantinga 1967, Lewis 1970, Adams 1971, Barnes 1972. Die historisch bekannteste Kritik findet sich in Kants Kritik der reinen Vernunft. Nach Kant geht das Argument fälschlicherweise davon aus, dass „Existenz“ ein „reales Prädikat“ sei.

Formale Detailanalyse (optional)

Literaturangaben

Adams, R., 1971, “The Logical Structure of Anselm’s Argument”, Philosophical Review, 80: 28–54. Barnes, J., 1972, The Ontological Argument, London: Macmillan. Kant, I., Kritik der reinen Vernunft 1781/1998. Hamburg: Felix Meiner. Lewis, D., 1970, “Anselm and Actuality”, Noûs, 4: 175–88. Plantinga, A., 1967, God and Other Minds, Ithaca: Cornell University Press.

· 3 Minuten Lesezeit
Als PDF herunterladen
Rekonstruiert wird eine viel diskutierte Passage aus David Humes "A Treatise of Human Nature", in welcher Hume sich gegen die zu seiner Zeit weit verbreitete Auffassung (z.B. bei Descartes, Locke, Berkeley) wendet, dass wir das eigene Selbst introspektiv wahrnehmen können.

Bibliographische Angaben

David Hume, A Treatise of Human Nature, 1739/1896. Oxford: Clarendon Press.

Textstelle

If any impression gives rise to the idea of self, that impression must continue invariably the same, thro’ the whole course of our lives; since self is suppos’d to exist after that manner. But there is no impression constant and invariable. Pain and pleasure, grief and joy, passions and sensations succeed each other, and never all exist at the same time. It cannot, therefore, be from any of these impressions, or from any other, that the idea of self is deriv’d; and consequently there is no such idea. (Hume, Treatise of Human Nature, Book I, Part IV, Section VI)

Argumentrekonstruktion

  1. The self exists invariably.
  2. If an impression gives rise to an idea of something that exists invariably, then that impression itself exists invariably. (implizit)

  1. If any impression gives rise to the idea of the self, that impression itself exists invariably. (Zwischenkonklusion, aus 1-2)
  2. Pain and pleasure, grief and joy, passions and sensations succeed each other, and never all exist at the same time.

  1. No impression exists invariably. (Zwischenkonklusion, aus 4)

  1. There is no impression that gives rise to the idea of the self. (Zwischekonklusion, aus 3,5)
  2. Every real idea must be derived from an impression.

  1. We do not have a real idea of the self. (Aus 1-4)

Kommentar

Eine philosophische Diskussion des obigen Argumentes erfordert insbesondere eine Auseinandersetzung mit Humes Terminologie (z.B. „idea,“ „impression,“ „passion,“ „sensation“, „(real) idea“). So ist z.B. der Schluss von 4 auf 5 nur gültig unter der Annahme, dass es keine „Impressionen“ jenseits der in 4 genannten gibt.

Formale Detailanalyse (optional)

Literaturangaben

· 2 Minuten Lesezeit
Als PDF herunterladen
Nozicks "Experience Machine" ist ein berühmtes Gedankenexperiment, in dem man die Wahl hat, sich an eine Maschine anzuschließen, um darin simulierte Glückserfahrungen zu machen. Es soll zeigen, dass sich niemand an eine solche Maschine anschließen würde und deshalb der Hedonismus falsch ist.

Bibliographische Angaben

Robert Nozick, Anarchy, State, and Utopia. New York: Basic Books, 1974.

Textstelle

Nozick beschreibt die "Experience Machine" folgendermaßen:

Suppose there were an experience machine that would give you any experience you desired. Superduper neuropsychologists could stimulate your brain so that you would think and feel you were writing a great novel, or making a friend, or reading an interesting book. All the time you would be floating in a tank, with electrodes attached to your brain. (Nozick, a.a.O., S. 42f.)

Argumentrekonstruktion

Nozicks Gedankenexperiment lässt sich als vierstufige Argumentation mit zwei Zwischenkonklusionen sowie der zu begründenden finalen Konklusion rekonstruieren.

  1. (Prämisse) Die Mehrheit der Menschen würde sich nicht an die “Experience Machine” anschließen.
  2. (Schluss auf die beste Erklärung) Wenn sich die Mehrheit der Menschen nicht an die “Experience Machine” anschließen würde, dann hält die Mehrheit der Menschen nicht nur Glückserfahrungen (pleasure) für intrinsisch wertvoll.
  3. (Konklusion aus 1-2) Die Mehrheit der Menschen hält nicht nur Glückserfahrungen für intrinsisch wertvoll.
  4. (Prämisse) Es ist nicht der Fall, dass sich die Mehrheit der Menschen in moralischen Fragen dieser Art irrt.
  5. (Konklusion aus 3-4) Es ist nicht der Fall, dass Glückserfahrungen der einzige intrinsische Wert sind.
  6. (Prämisse) Wenn der Hedonismus richtig ist, dann sind Glückserfahrungen der einzige intrinsische Wert.
  7. (Konklusion aus 5-6) Der Hedonismus ist falsch.

Kommentar

Formale Detailanalyse (optional)

Literaturangaben